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Abstract: The µνSSM has been proposed to solve simultaneously the µ-problem of the

MSSM and explain current neutrino data. The model breaks lepton number as well as

R-parity. In this paper we study the phenomenology of this proposal concentrating on

neutrino masses and the decay of the lightest supersymmetric particle (LSP). At first we

investigate in detail the µνSSM with one generation of singlets, which can explain all

neutrino data, once 1-loop corrections are taken into account. Then we study variations of

the model with more singlets, which can generate all neutrino masses and mixings at tree-

level. We calculate the decay properties of the lightest supersymmetric particle, assumed

to be the lightest neutralino, taking into account all possible final states. The parameter

regions where the LSP decays within the LHC detectors but with a length large enough to

show a displaced vertex are identified. Decay branching ratios of certain final states show

characteristic correlations with the measured neutrino angles, allowing to test the model at

the LHC. Finally we briefly discuss possible signatures, which allow to distinguish between

different R-parity breaking models.

Keywords: Supersymmetry Phenomenology

ArXiv ePrint: 0903.3596

c© SISSA 2009 doi:10.1088/1126-6708/2009/05/120

mailto:alfred.bartl@univie.ac.at
mailto:mahirsch@ific.uv.es
mailto:sliebler@physik.uni-wuerzburg.de
mailto:porod@physik.uni-wuerzburg.de
mailto:Avelino.Vicente@ific.uv.es
http://arxiv.org/abs/0903.3596
http://dx.doi.org/10.1088/1126-6708/2009/05/120


J
H
E
P
0
5
(
2
0
0
9
)
1
2
0

Contents

1 Introduction 1

2 Model basics 4

2.1 Superpotential 4

2.2 Soft terms 5

2.3 Scalar potential and its minimization 5

2.4 Masses of the neutral scalars and pseudoscalars 7

2.5 Neutrino masses 9

2.5.1 One generation of right-handed neutrinos 10

2.5.2 n generations of right-handed neutrinos 11

3 Choice of the parameters and experimental constraints 13

4 Phenomenology of the 1 ν̂c-model 15

4.1 Decays of a gaugino-like lightest neutralino 16

4.2 Decays of a singlino-like lightest neutralino 20

5 Phenomenology of the n ν̂c-model 23

5.1 Correlations with neutrino mixing angles in the n ν̂c-model 24

5.2 χ̃0
1 decay length and type of fit 26

5.3 Several light singlets 27

6 Discussion and conclusions 29

A Mass matrices 32

A.1 Charged scalars 32

A.2 Neutral scalars 34

A.3 Pseudoscalars 35

A.4 Neutral Fermions 36

A.5 Charged Fermions 37

B Coupling χ̃0

1
− W ±

− l
∓
i

38

1 Introduction

The Minimal Supersymmetric extension of the Standard Model (MSSM) [1] assumes that

R-parity is conserved. R-parity (Rp) [2], defined as Rp = (−1)3B+L+2S , was originally

introduced to guarantee the stability of the proton in supersymmetric models [3, 4]. It has
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two immediate consequences: First, the lightest supersymmetric particle (LSP) is stable.

For cosmological reasons a stable LSP has to be electrically neutral, thus leading to the

“standard” missing momentum signature of SUSY. Second, the MSSM with Rp, for the

same reasons as the SM, predicts zero neutrino masses.

Neutrino oscillation experiments have demonstrated that at least two neutrinos have

non-zero mass [5–7]. Especially remarkable is that data from both atmospheric neutrino [8]

and from reactor neutrino measurements [9] now show the characteristic L/E dependence

expected from oscillations, ruling out or seriously disfavouring other explanations of the

observed neutrino deficits. It is fair to say that with the most recent data by the Kam-

LAND [9], Super-K [10] and MINOS collaborations [11] neutrino physics has finally entered

the precision era. (For the latest evaluation of allowed neutrino parameter regions, see for

example the updated fits in [12].)

Non-zero neutrino masses can be easily included into the standard model by simply

adding right-handed neutrinos, postulating the existence of a (∆L = 2) dimension-5 opera-

tor [13] of unspecified origin or by introducing the seesaw mechanism with either fermionic

singlets [14–16], a scalar triplet [17, 18] or fermionic triplets [19]. Neutrino masses could

be induced also at 1-loop-level [20] or even at 2-loop order [18, 21, 22].

While all of the neutrino mass models mentioned above can be easily supersym-

metrized, there is also an entirely supersymmetric possibility to generate Majorana neutrino

masses: R-parity violation [23–25]. Different models of (lepton number violating) R-parity

violation have been discussed in the literature. Within the MSSM particle content R-parity

can be broken explicitly either by bilinear or by trilinear terms [24]. The huge number of

free parameters in the trilinear model, however, makes such a general ansatz rather arbi-

trary. Attempts to reduce the number of free parameters based on discrete symmetries

have been discussed in the literature [26–29]. One could also postulate that lepton number

is conserved at the superpotential level, broken only by the vacuum expectation value (vev)

of some singlet field [30]. This is called spontaneous R-parity violation (s-Rp/ ).1 Bilinear

Rp/ (b-Rp/ ) can be understood as the low-energy limit of some s-Rp/ model, where the new

singlet fields are all decoupled. Such a bilinear model has only six new Rp/ parameters and is

thus more predictive than the general case with all possible bilinear and trilinear couplings.2

The phenomenology of Rp/ SUSY has been studied extensively in the past, for reviews

see [33, 34]. Neutrino masses have been calculated with trilinear couplings [24] and for

pure bilinear models [35–37]. Neutrino angles are not predicted in either schemes, but

can be easily fitted to experimental data. In bilinear schemes the requirement to correctly

explain neutrino data fixes all Rp/ couplings in sufficiently small intervals such that in some

specific final states of the decays of the LSP correlations with neutrino angles appear. This

has been shown for a (bino-dominated) neutralino LSP in [38], for charged scalar LSPs

1The first model to propose s-Rp/ [23] used the left-sneutrinos to break Rp. This leads to a doublet

Majoron, now ruled out by LEP data [31].
2In [32] it has been proposed that the trilinear parameters follow the hierarchies of the standard model

Yukawa couplings. This is very similar to the pure bilinear model, which in the mass eigenstate basis

has effective trilinear parameters given by products of bilinear parameters and down quark/charged lepton

Yukawa couplings.
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in [39] and for sneutrino, chargino, gluino and squark LSPs in [40]. Such a tight connection

between neutrino physics and LSP decays is lost, however, in the general trilinear-plus-

bilinear case. (For some recent work on collider phenomenology in trilinear Rp/ , see for

example [41–44] and references in [33].)

The superpotential of the MSSM contains a mass term for the Higgs superfields,

µĤdĤu. For phenomenological reasons this parameter µ must be of the order of the

electro-weak scale. However, if there is a larger scale in the theory, like the grand unifica-

tion scale, the natural value of µ lies at this large scale. This is, in short, the µ-problem

of the MSSM [45]. The Next-to-Minimal SSM (NMSSM) provides a solution to this prob-

lem [46, 47], at the cost of introducing a new singlet field. The vev of the singlet produces

the µ term, once electro-weak symmetry is broken. (For some recent papers on the phe-

nomenology of the NMSSM, see for example [48–50] and references therein.)

The µνSSM [51] proposes to use the same singlet superfield(s) which generate the µ

term to also generate Dirac mass terms for the observed left-handed neutrinos. Lepton

number in this approach is broken explicitly by cubic terms coupling only singlets. Rp is

broken also and Majorana neutrino masses are generated once electro-weak symmetry is

broken. Two recent papers have studied the µνSSM in more detail. In [52] the authors

analyze the parameter space of the µνSSM, putting special emphasis on constraints arising

from correct electro-weak symmetry breaking, avoiding tachyonic states and Landau poles

in the parameters. The phenomenology of the µνSSM has been studied also in [53]. In this

paper formulas for tree-level neutrino masses are given and decays of a neutralino LSP to

two-body (W -lepton) final states have been calculated [53].

We note that similar proposals have been discussed in the literature. [54] studied a

model in which the NMSSM singlet is coupled to (right-handed) singlet neutrino superfields.

Effectively this leads to a model which is very similar to the NMSSM with explicit bilinear

terms, as studied for example also in [55]. In [56] the authors propose a model similar to

the µνSSM, but with only one singlet.

In the present paper, we study the phenomenology of the µνSSM, extending previous

work [51–53]. We consider two different variations of the model. In its simplest form

the µνSSM contains only one new singlet. This version produces one neutrino mass at

tree-level, while the remaining two neutrinos receive mass at the loop-level. This feature

is very similar to bilinear R-parity breaking, although as discussed below, the relative

importance of the various loops is different for the explicit bilinear model and the µνSSM.

As in the explicit bilinear model neutrino angles restrict the allowed range of Rp/ parameters

and correlations between certain ratios of decay branching ratios of the LSP and neutrino

angles appear. In the second version we allow for n singlets. Neutrino masses can then

be fitted with tree-level physics only. However, many of the features of the one generation

model remain at least qualitatively also in the n singlet variants. LSP decays (for a bino or

a singlino LSP) can be correlated with either the solar or atmospheric angle, thus allowing

to construct explicit tests of the model for the LHC. In contrast to [53] we consider all

kinematically allowed final states. This does not only cover scenarios where two-body

decays are important, but also those where three-body decays are dominant. In addition

we show that even in the scenarios where two-body decay modes in singlet Higgs bosons

dominante, the lifetime can be such that the LSP decays outside the detector.
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This paper is organized as follows. In the next section we outline the model, give the

soft breaking terms, discuss the mass matrices and calculate approximate formulas for neu-

trino masses. We will not use the approximate formulas in our numerical analysis, but give

them explicitly because they allow to understand in an easy way our numerical results qual-

itatively. In section III we discuss existing constraints on the model space, apart from neu-

trino physics, and outline the properties of the “standard” points, which we will use in our

numerical analysis. We then turn to the collider phenomenology of the model. In section IV

we study the one generation variant of the µνSSM. Decays of scalars are briefly discussed,

before calculating decay properties of the neutralino LSP. Section V gives a discussion of

the LSP phenomenology for the n generation variant, although we will mainly focus on two

generations. Similarities and differences to the one generation model are discussed. In sec-

tion VI we then give a short, mostly qualitative discussion of possible signals which might

give some hints which R-parity breaking model is indeed realized in nature, before closing

with a short summary. Mass matrices and couplings are given in various appendices.

2 Model basics

In this section we introduce the model, work out its most important properties related to

phenomenology and neutrino masses and mixings. As explained in the introduction, we

will consider the n generations case in this section. Approximate formulas are then given

for scalar masses for the one (1) ν̂c-model and for neutrino masses for the 1 and 2 ν̂c-model.

2.1 Superpotential

The model contains n generations of right-handed neutrino singlets. The superpotential

can be written as

W = hij
U Q̂iÛjĤu + hij

DQ̂iD̂jĤd + hij
EL̂iÊjĤd

+his
ν L̂iν̂

c
sĤu − λsν̂

c
sĤdĤu +

1

3!
κstuν̂

c
s ν̂

c
t ν̂

c
u . (2.1)

The last three terms include the right-handed neutrino superfields, which additionally play

the role of the Φ̂ superfield in the NMSSM [46], a gauge singlet with respect to the SM

gauge group. The model does not contain any terms with dimensions of mass, providing

a natural solution to the µ-problem of the MSSM. Please note, that as the number of

right-handed neutrino superfields can be different from 3 we use the letters s, t and u as

generation indices for the ν̂c superfields and reserve the letter i, j and k as generation

indices for the usual MSSM matter fields.

The last two terms in (2.1) explicitly break lepton number and thus R-parity giving rise

to neutrino masses. Note that κstu is completely symmetric in all its indices. In contrast to

other models with R-parity violation, this model does not need the presence of unnaturally

small parameters with dimensions of mass, like in bilinear R-parity breaking models [34],

and there is no Goldstone boson associated with the breaking of lepton number [23, 57, 58],

since breaking of Rp is done explicitly.
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For practical purposes, it is useful to write the superpotential in the basis where the

right-handed neutrinos have a diagonal mass matrix. Since their masses are induced by the

κ term in (2.1), this is equivalent to writing this term including only diagonal couplings:

κstuν̂
c
s ν̂

c
t ν̂

c
u =⇒

n∑

s=1

κs(ν̂
c
s)

3 (2.2)

2.2 Soft terms

The soft SUSY breaking terms of the model are

Vsoft = V
MSSM−Bµ

soft + V singlets
soft . (2.3)

V
MSSM−Bµ

soft contains all the usual soft terms of the MSSM but the Bµ-term

V
MSSM−Bµ

soft = mij
Q

2
Q̃a∗

i Q̃
a
j +mij

U

2
ŨiŨ

∗
j +mij

D

2
D̃iD̃

∗
j +mij

L

2
L̃a∗

i L̃
a
j +mij

E

2
ẼiẼ

∗
j

+m2
Hd
Ha∗

d Ha
d +m2

Hu
Ha∗

u Ha
u − 1

2

[
M1B̃

0B̃0 +M2W̃
cW̃ c +M3g̃

dg̃d + h.c.
]

+ǫab

[
T ij

U Q̃
a
i Ũ

∗
j H

b
u + T ij

D Q̃
b
iD̃

∗
jH

a
d + T ij

E L̃
b
i Ẽ

∗
jH

a
d + h.c.

]
(2.4)

and V singlets
soft includes the new terms with singlets:

V singlets
soft = mst

ν̃c
2
ν̃c

s ν̃
c∗
t + ǫab

[
T st

hν
L̃a

s ν̃
c
tH

b
u −T s

λ ν̃
c
sH

a
dH

b
u +h.c.

]
+

[
1

3!
T stu

κ ν̃c
s ν̃

c
t ν̃

c
u + h.c.

]
(2.5)

In these expressions the notation for the soft trilinear couplings introduced in [59, 60]

is used. Note that the rotation made in the superpotential does not necessarily diag-

onalize the soft trilinear terms T stu
κ implying in general additional mixing between the

right-handed sneutrinos.

2.3 Scalar potential and its minimization

Summing up the different contributions, the scalar potential considering only neutral

fields reads

V = VD + VF + Vsoft (2.6)

with

VD =
1

8
(g2 + g′2)

(
∣∣H0

u

∣∣2 − |H0
d |2 −

3∑

i=1

|ν̃i|2
)2

(2.7)

VF = |his
ν ν̃iν̃

c
s − λsν̃

c
sH

0
d |2 + |λsν̃

c
sH

0
u|2 +

3∑

i=1

|his
ν ν̃

c
sH

0
u|2

+

n∑

s=1

∣∣∣∣h
is
ν ν̃iH

0
u − λsH

0
uH

0
d +

1

2
κs(ν̃

c
s)

2

∣∣∣∣
2

, (2.8)

where summation over repeated indices is implied.
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This scalar potential determines the structure of the vacuum, inducing vevs:

〈H0
d〉 =

vd√
2
, 〈H0

u〉 =
vu√
2
, 〈ν̃c

s〉 =
vRs√

2
, 〈ν̃i〉 =

vi√
2

(2.9)

In particular, the vevs for the right-handed sneutrinos generate effective bilinear couplings:

his
ν L̂iν̂

c
sĤu − λsν̂

c
sĤdĤu =⇒ his

ν L̂i
vRs√

2
Ĥu − λs

vRs√
2
ĤdĤu ≡ ǫiL̂iĤu − µĤdĤu (2.10)

Since by electroweak symmetry breaking an effective µ term is generated, it is at the

electroweak scale. Minimizing the scalar potential gives the following tadpole equations at

tree-level

∂V

∂vd
=

1

8
(g2 + g′2)u2vd +m2

Hd
vd +

1

2
vdλsλ

∗
t vRsvRt +

1

2
vdv

2
uλsλ

∗
s

−1

8
v2
Rsvu(κsλ

∗
s + h.c.) − 1

4
vi(λ

∗
sh

it
ν vRsvRt + h.c.) − 1

4
v2
uvi(λ

∗
sh

is
ν + h.c.)

− 1

2
√

2
vuvRs(T

s
λ + h.c.) = 0 (2.11)

∂V

∂vu
= −1

8
(g2 + g′2)u2vu +m2

Hu
vu +

1

2
vuλsλ

∗
t vRsvRt +

1

2
v2
dvuλsλ

∗
s −

1

8
v2
Rivd(κsλ

∗
s + h.c.)

+
1

8
viv

2
Rs(κ

∗
sh

is
ν + h.c.) − 1

2
vdvuvi(λ

∗
sh

is
ν + h.c.) +

1

2
vuvivjh

is
ν (hjs

ν )∗

+
1

2
vuh

is
ν (hit

ν )∗vRsvRt −
1

2
√

2
vdvRs(T

s
λ + h.c.) +

1

2
√

2
vivRs(T

is
hν

+ h.c.) = 0 (2.12)

∂V

∂vi
=

1

8
(g2 + g′2)u2vi +

1

2
(m2

Lij +m2
Lji)vj −

1

4
vdv

2
u(λ∗sh

is
ν + h.c.)

+
1

8
v2
Rsvu(κ∗sh

is
ν + h.c.) − 1

4
vd(λ

∗
svRsvRth

it
ν + h.c.) +

1

4
vj(vRsvRth

is
ν (hjt

ν )∗ + h.c.)

+
1

4
v2
uvj(h

is
ν (hjs

ν )∗ + h.c.) +
1

2
√

2
vuvRs(T

is
hν

+ h.c.) = 0 (2.13)

∂V

∂vRs
= m2

ν̃cssvRs −
1

4
vdvuvRs(κsλ

∗
s + h.c.) +

1

4
κsκ

∗
sv

3
Rs

+
1

4
vuvRsvj(κ

∗
sh

js
ν + h.c.) +

1

4
(v2

u + v2
d)(λsλ

∗
t vRt + h.c.) +

1

4
v2
u[hjs

ν (hjt
ν )∗vRt + h.c.]

+
1

4
vmvn[(hms

ν )∗hnt
ν vRt + h.c.] − 1

4
vdvj(λ

∗
th

js
ν vRt + λ∗svRth

jt
ν + h.c.)

− 1

2
√

2
vdvu(T s

λ + h.c.) +
1

2
√

2
vuvj(T

js
hν

+ h.c.) +
1

4
√

2
vRtvRu

(
T stu

κ + h.c.
)

= 0

(2.14)

with

u2 = v2
d − v2

u + v2
1 + v2

2 + v2
3 (2.15)

and there is no sum over the index s in Equation (2.14).

As usual in R-parity breaking models with right-handed neutrinos, see for example

the model proposed in [30], it is possible to explain the smallness of the vi in terms of the

– 6 –
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smallness of the Yukawa couplings hν , that generate Dirac masses for the neutrinos. This

can be easily seen from Equation (2.13), where both quantities are proportional. Moreover,

as shown in [51], taking the limit hν → 0 and, consequently, vi → 0, one recovers the tadpole

equations of the NMSSM, ensuring the existence of solutions to this set of equations.

2.4 Masses of the neutral scalars and pseudoscalars

In this subsection we work out the main features of the neutral scalar sector mainly focusing

on singlets. The complete mass matrices are given in appendix A. We start with the one

generation case which closely resembles the NMSSM, considered, for example, in [61, 62].

This already implies an upper bound on the lightest doublet Higgs mass m(h0), where we

will focus on at the end of this subsection. A correct description of neutrino physics implies

small values for the vevs vi of the left sneutrinos and small Yukawa couplings hν as we will

see later. Neglecting mixing terms proportional to these quantities, the (6×6) mass matrix

of the pseudoscalars in the basis Im(H0
d ,H

0
u, ν̃

c, ν̃i) given in appendix A, Equation (A.20),

can be decomposed in two (3 × 3) blocks. By using the tadpole equations we obtain

M2
P 0 =




M2
HH M2

HS 0(
M2

HS

)T
M2

SS 0

0 0 M2
L̃L̃


 (2.16)

with

M2
HH =

(
(Ω1 + Ω2)

vu

vd
Ω1 + Ω2

Ω1 + Ω2 (Ω1 + Ω2)

)
, M2

HS =

(
(−2Ω1 + Ω2)

vu

vR

(−2Ω1 + Ω2)
vd

vR

)

M2
SS = (4Ω1 + Ω2)

vdvu

v2
R

− 3Ω3,
(
M2

L̃L̃

)

ij
=

1

2

(
m2

L̃

)

ij
+

1

2

(
m2

L̃

)

ji
+δij

[
1

8

(
g2+g′2

)
u2

]

(2.17)

where u2 is defined in Equation (2.15). The parameters Ωi are defined as:

Ω1 =
1

8
(λκ∗ + λ∗κ) v2

R, Ω2 =
1

2
√

2
(Tλ + T ∗

λ ) vR, Ω3 =
1

4
√

2
(Tκ + T ∗

κ ) vR (2.18)

The upper (3 × 3) block contains the mass terms for Im(Hd), Im(Hu) and Im(ν̃c) and we

get analytic expressions for the eigenvalues:

m2(P 0
1 ) = 0

m2(P 0
2 ) =

1

2
(Ω1 + Ω2)

(
vd

vu
+
vu

vd
+
vdvu

v2
R

)
− 3

2
Ω3 −

√
Γ

m2(P 0
3 ) =

1

2
(Ω1 + Ω2)

(
vd

vu
+
vu

vd
+
vdvu

v2
R

)
− 3

2
Ω3 +

√
Γ

with Γ =

(
1

2
(Ω1 + Ω2)

(
vd

vu
+
vu

vd
+
vdvu

v2
R

)
− 3

2
Ω3

)2

+ 3 (Ω1 + Ω2) Ω3

(
vd

vu
+
vu

vd

)
− 9Ω1Ω2

(
v2
R

v2
d

+
v2
R

v2
u

)
(2.19)
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The first eigenvalue corresponds to the Goldstone boson due to spontaneous symmetry

breaking. To get only positive eigenvalues for the physical states, the condition

Ω3 <
vdvu

v2
R

3Ω1Ω2

Ω1 + Ω2

=: f1 (Ω2) (2.20)

has to be fulfilled, implying that Tκ has in general the opposite sign of vR. Additional

constraints on the parameters are obtained from the positiveness of the squared masses of

the neutral scalars. Taking the scalar mass matrix from appendix A, Equation (A.11), in

the basis Re(H0
d ,H

0
u, ν̃

c, ν̃i) in the same limit as above we obtain

M2
S0 =




M2
HH M2

HS 0(
M2

HS

)T
M2

SS 0

0 0 M2
L̃L̃


 (2.21)

with

M2
HH =

(
(Ω1 + Ω2)

vu

vd
+ Ω6

vd

vu
−Ω1 − Ω2 − Ω6 + Ω4

−Ω1 − Ω2 − Ω6 + Ω4 (Ω1 + Ω2)
vd

vu
+ Ω6

vu

vd

)
,

M2
HS =

(
(−2Ω1 − Ω2)

vu

vR
+ Ω4

vR

vu

(−2Ω1 − Ω2)
vd

vR
+ Ω4

vR

vd

)

M2
SS = Ω2

vdvu

v2
R

+ Ω3 + Ω5,

(
M2

L̃L̃

)

ij
=

1

4

(
g2 + g′2

)
vivj +

1

2

(
m2

L̃

)

ij
+

1

2

(
m2

L̃

)

ji
+ δij

[
1

8

(
g2 + g′2

)
u2

]
(2.22)

using the additional parameters

Ω4 = λλ∗vdvu > 0, Ω5 =
1

2
κκ∗v2

R > 0, Ω6 =
1

4

(
g2 + g′2

)
vdvu > 0 . (2.23)

An analytic determination of the eigenvalues is possible but not very illuminating. However,

one can use the following theorem: A symmetric matrix is positive definite, if all eigenvalues

are positive and this is equal to the positiveness of all principal minors (Sylvester criterion).

This results in the following three conditions

0 < (Ω1 + Ω2)
vu

vd
+ Ω6

vd

vu

0 < (Ω1 + Ω2)

(
Ω6

(
v2
d

v2
u

+
v2
u

v2
d

)
− 2Ω6 + 2Ω4

)
+ 2Ω4Ω6 − Ω2

4

0 < Ω3 − f2 (Ω2) , (2.24)
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where f2(Ω2) is given by:

f2 (Ω2) =
Σ1

Σ2

with

Σ1 = (Ω1 + Ω2) Ω5 (−2Ω4 + 2Ω6) +
(
Ω2

4 − 2Ω4Ω6

)
Ω5

+ (Ω1 + Ω2)Ω2
4v

2
R

(
vd

v3
u

+
vu

v3
d

)
+
(
4Ω2

1 + 3Ω1Ω2

)
Ω6

1

v2
R

(
v3
d

vu
+
v3
u

vd

)

− (Ω1 + Ω2)Ω5Ω6

(
v2
d

v2
u

+
v2
u

v2
d

)
+ 2 (Ω1 + Ω2 − Ω4 + 2Ω6)Ω2

4

v2
R

vdvu

− 2 (2Ω1 + Ω2) (2Ω1 + 2Ω2 − Ω4 + 2Ω6)Ω4

(
vd

vu
+
vu

vd

)

+
[
16Ω3

1 + 8 (4Ω2 − Ω4 + Ω6) Ω2
1 + 10Ω1Ω2 (2Ω2 − Ω4 + Ω6)

+Ω2 (2Ω2 − Ω4) (2Ω2 − Ω4 + 2Ω6)]
vdvu

v2
R

Σ2 = (Ω1 + Ω2) Ω6

(
v2
d

v2
u

+
v2
u

v2
d

)
+ 2 (Ω1 + Ω2) (Ω4 − Ω6)

+ 2Ω4Ω6 − Ω2
4 (2.25)

The first two conditions are in general fulfilled, but for special values of tan β or λ. Putting

all the above together we get the following conditions:

f2(Ω2) < Ω3 < f1(Ω2) (2.26)

It turns out that by taking a negative value of Ω3 (∝ Tκ) near f2(Ω2) one obtains a very

light singlet scalar, whereas for a value of Ω3 near f1(Ω2) one gets a very light singlet

pseudoscalar. In between one finds a value of Ω3, where both particles have the same

mass. This discussion is comparable to formula (37) in [62] for the NMSSM. Moreover, a

small mass of the singlet scalar and/or pseudoscalar comes always together with a small

mass of the singlet fermion.

In the n generation case similar result holds as long as Tκ and m2
ν̃c do not have off-

diagonal entries compared to κ. Inspecting Equations (A.15) and (A.24) it is possible

to show that the singlet scalars and pseudoscalars can be heavy by appropriately chosen

values for the off-diagonal entries of Tκ while keeping at the same time the singlet fermions

relatively light, as will be discussed later. As pointed out in [52], the NMSSM upper bound

on the lightest doublet Higgs mass of about ∼ 150 GeV, which also applies in the µνSSM,

can be relaxed to O(300) GeV, if one does not require perturbativity up to the GUT scale.

2.5 Neutrino masses

In the basis (
ψ0
)T

=
(
B̃0, W̃ 0

3 , H̃
0
d , H̃

0
u, ν

c
s , νi

)
(2.27)

the mass matrix of the neutral fermions, see appendix A.4, has the structure

Mn =

(
MH m

mT 0

)
. (2.28)
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Here MH is the submatrix including the heavy states, which consists of the usual four neu-

tralinos of the MSSM and n generations of right-handed neutrinos. The matrix m mixes the

heavy states with the left-handed neutrinos and contains the R-parity breaking parameters.

The matrix Mn can be diagonalized in the standard way:

M̂n = N ∗MnN−1 (2.29)

As it is well known, the smallness of neutrino masses allows to find the effective neutrino

mass matrix in a seesaw approximation

meff

νν
= −mT · MH

−1m = −ξ · m , (2.30)

where the matrix ξ contains the small expansion parameters which characterize the mixing

between the neutrino sector and the heavy states.

Since the superpotential explicitly breaks lepton number, at least one mass for the left-

handed neutrinos is generated at tree-level. In the case of the 1 ν̂c-model the other neutrino

masses are generated at loop-level. With more than one generation of right-handed neutri-

nos additional neutrino masses are generated at tree-level, resulting in different possibilities

to fit the neutrino oscillation data, see the discussion below.

2.5.1 One generation of right-handed neutrinos

With only one generation of right-handed neutrinos the matrix ξ is given by

ξij = Kj
ΛΛi −

1

µ
ǫiδj3 , (2.31)

where the ǫi and Λi parameters are defined as

ǫi =
1√
2
hi

νvR (2.32)

Λi = µvi + ǫivd (2.33)

and Kj
Λ as

K1
Λ =

2g′M2µ

mγ
a

K2
Λ = −2gM1µ

mγ
a

K3
Λ =

mγ

8µDet(MH)
(λ2vdv

2 + 2MRµvu)

K4
Λ = − mγ

8µDet(MH)
(λ2vuv

2 + 2MRµvd)

K5
Λ =

λmγ

4
√

2Det(MH)
(v2

u − v2
d) (2.34)

with

mγ = g2M1 + g′2M2, v2 = v2
d + v2

u, MR =
1√
2
κvR (2.35)

a =
mγ

4µDet(MH)
(vdvuλ

2 +MRµ) (2.36)
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Figure 1. Example of one 1-loop correction to the effective neutrino mass matrix involving the

singlet scalar/pseudoscalar.

and Det(MH) is the determinant of the (5 × 5) mass matrix of the heavy states

Det(MH) =
1

8
mγ(λ2v4 + 4MRµvdvu) −M1M2µ(vdvuλ

2 +MRµ) . (2.37)

Using these expressions the tree-level effective neutrino mass matrix takes the form

(meff

νν
)ij = aΛiΛj . (2.38)

The projective form of this mass matrix implies that only one neutrino gets a tree-level

mass, while the other two remain massless. Therefore, as in models with bilinear R-

parity violation [36, 37, 63] 1-loop corrections are needed in order to correctly explain the

oscillation data, which require at least one additional massive neutrino. The absolute scale

of neutrino mass constrains the ~Λ and ~ǫ parameters, which have to be small. For typical

SUSY masses order O(100 GeV), one finds |~Λ|/µ2 ∼ 10−7–10−6 and |~ǫ|/µ ∼ 10−5–10−4.

This implies a ratio of |~ǫ|2/|~Λ| ∼ 10−3–10−1.

General formulas for the 1-loop contributions can be found in [36] and adjusted to the

µνSSM with appropriate changes in the index ranges for neutralinos and scalars. Important

contributions to the neutrino mass matrix are due to b− b̃ and τ − τ̃ loops as in the models

with b-Rp/ [37]. In addition there are two new important contributions: (i) loops containing

the singlet scalar and singlet pseudoscalar shown in figure 1. As shown in [64–66], the sum

of both contributions is proportional to the squared mass difference ∆12 = m2
R−m2

I ∝ κ2v2
R

between the singlet scalar and pseudoscalar mass eigenstates. Note that this splitting can

be much larger than the corresponding ones for the left sneutrinos. Thus the sum of both

loops can be more important than b − b̃ and τ − τ̃ loops in the current model. (ii) At

loop-level a direct mixing between the right-handed neutrinos and the gauginos is possible

which is zero at tree-level, see figure 2.

2.5.2 n generations of right-handed neutrinos

In this class of models with n > 1 one can explain the neutrino data using the tree-level

neutrino mass matrix only. In general one finds that the loop corrections are small if the

conditions at the end of this section are fulfilled.
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Figure 2. 1-loop mixing between gauginos and the right-handed neutrinos.

For the sake of simplicity, let us consider two generations of right-handed neutrinos

which contains all relevant features. The matrix ξ in Equation (2.30) takes the form

ξij = Kj
ΛΛi +Kj

ααi −
ǫi
µ
δj3 (2.39)

with

ǫi =
1√
2
his

ν vRs (2.40)

Λi = µvi + ǫivd (2.41)

αi = vu(λ2h
i1
ν − λ1h

i2
ν ) . (2.42)

The KΛ and Kα coefficients are:

K1
Λ =

2g′M2µ

mγ
a, K1

α =
2g′M2µ

mγ
b

K2
Λ = −2gM1µ

mγ
a, K2

α = −2gM1µ

mγ
b

K3
Λ =

mγ

8µDet(MH)

[
vdv

2(MR1λ
2
2 +MR2λ

2
1) + 2vuMR1MR2µ

]

K3
α =

b

mγ(v2
u − v2

d)
(mγv

2vu − 4M1M2µvd)

K4
Λ = − mγ

8µDet(MH)

[
vuv

2(MR1λ
2
2 +MR2λ

2
1) + 2vdMR1MR2µ

]

K4
α =

b

mγ(v2
u − v2

d)
(mγv

2vd − 4M1M2µvu)

K5
Λ =

MR2λ1mγ

4
√

2Det(MH)
(v2

u − v2
d), K5

α = −
√

2λ2c−
4Det0vR1

µmγ(v2
u − v2

d)
b

K6
Λ =

MR1λ2mγ

4
√

2Det(MH)
(v2

u − v2
d), K6

α =
√

2λ1c−
4Det0vR2

µmγ(v2
u − v2

d)
b (2.43)

The effective neutrino mass matrix reads as

(meff

νν
)ij = aΛiΛj + b(Λiαj + Λjαi) + cαiαj (2.44)
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with

a =
mγ

4µDet(MH)
(MR1λ

2
2vuvd +MR2λ

2
1vuvd +MR1MR2µ) (2.45)

b =
mγ

8
√

2µDet(MH)
(v2

u − v2
d)(MR1vR1λ2 −MR2vR2λ1) (2.46)

c = − 1

16µ2Det(MH)

[
µ2(mγv

4 − 8M1M2µvuvd) + 4Det0(MR1v
2
R1 +MR2v

2
R2)
]

(2.47)

using MRs = 1√
2
κsvRs and the determinant of the (6×6) mass matrix of the heavy states is

Det(MH) =
1

8

[
(MR2λ

2
1 +MR1λ

2
2)(mγv

4 − 8M1M2µvuvd) + 8MR1MR2Det0
]

(2.48)

with Det0 being the determinant of the usual MSSM neutralino mass matrix

Det0 =
1

2
mγµvdvu −M1M2µ

2 . (2.49)

The mass matrix in Equation (2.44) has two nonzero eigenvalues and therefore the loop

corrections are not needed to explain the experimental data. Two different options arise:

• ~Λ generates the atmospheric mass scale, ~α the solar mass scale

• ~α generates the atmospheric mass scale, ~Λ the solar mass scale

In both cases one obtains in general a hierarchical spectrum. A strong fine-tuning

would be necessary to generate an inverted hierarchy which is not stable against small varia-

tions of the parameters or radiative corretions. Moreover the absolute scale of neutrino mass

requires both |~Λ|/µ2 and |~α|/µ to be small. For typical SUSY masses order O(100 GeV)

we find in the first case |~Λ|/µ2 ∼ 10−7–10−6 and |~α|/µ ∼ 10−9–10−8. In the second case

we find |~Λ|/µ2 ∼ 10−8–10−7 and |~α|/µ ∼ 10−8–10−7. The ratios including ~ǫ or ~α are much

smaller than those in the 1 ν̂c case. We find that 1-loop corrections to (2.44) are negligible if

|~α|2
|~Λ|

. 10−3 and
|~ǫ|2
|~Λ|

. 10−3 (2.50)

are fulfilled. Note that the mixing of the neutrinos with the higgsinos, given by the third

column in the matrix ξ in Equation (2.39), depends not only on αi but also on ǫi. This

leads to 1-loop corrections to the neutrino mass matrix with pieces proportional to the

ǫi parameters, as it also happens in the 1 ν̂c-model. Therefore, both conditions in Equa-

tion (2.50) need to be fulfilled. Finally, in models with more generations of right-handed

neutrinos there will be more freedom due to additional contributions to the neutrino mass

matrix. For example, the case of three generations is discussed in [53], where the additional

freedom is also used to generate an inverted hierarchy for the neutrino masses.

3 Choice of the parameters and experimental constraints

In the subsequent sections we work out collider signatures for various scenarios. To facili-

tate the comparison with existing studies we adopt the following strategy: We take existing
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study points and augment them with the additional model parameters breaking R-parity.

These points are SPS1a’ [67], SPS3, SPS4, SPS9 [68] and the ATLAS SU4 point [69].

SPS1a’ contains a relative light spectrum so that at LHC a high statistic can be achieved,

SPS3 has a somewhat heavier spectrum and in addition the lightest neutralino and the

lighter stau are close in mass which affects also the R-parity violating decays of the lightest

neutralino. SPS4 is chosen because of the large tan β value and SPS9 is an AMSB scenario

where not only the lightest neutralino but also the lighter chargino has dominant R-parity

violating decay modes. In all these points the lightest neutralino is so heavy that it can

decay via two-body modes, as long as it’s not a light νc. In contrast for the SU4 point

all two-body decay modes (at tree-level) are kinematically forbidden. As the parameters

of these points are given at different scales we use the program SPheno [70] to evaluate

them at Q = mZ where we add the additional model parameters. Note that we allow µ

to depart from their standard SPS values to be consistent with the LEP bounds on Higgs

masses, discussed below.

The additional model parameters are subject to theoretical and experimental con-

straints. In [52] the question of color and charge breaking minimas, perturbativity up

to the GUT scale as well as the question of tachyonic states for the neutral scalar and

pseudoscalars have been investigated . The last issue has already been addressed in sec-

tion 2.4 where we derived conditions on the parameters. By choosing the coupling constants

λ, κ < 0.6 in the 1 ν̂c-model and λs, κs < 0.5 in the 2 ν̂c-model, perturbativity up to the

GUT scale is guaranteed [52]. Note, that choosing somewhat larger values for λ and/or κ

up to 1 does not change any of the results presented below. We also address the question

of color and charge breaking minimas by choosing λs > 0, κs > 0, T s
λ > 0, T stu

κ < 0,

whereas the Yukawa couplings his
ν can either be positive or negative, but those values are

small < O(10−6) due to constraints from neutrino physics. Our T is
hν

are negative, so the

condition (2.8) of [52] is easy to fulfill.

Concerning experimental data we take the following constraints into account:

• We check that the neutrino data are fulfilled within the 2-σ range given in table 1

taken from ref. [12] if not stated otherwise. These data can easily be fitted using the

effective neutrino mass matrices given in section 2.5.

• Breaking lepton number implies that flavour violating decays of the leptons like

µ → eγ are possible, where strong experimental bounds exist [31]. However, in

the model under study it turns out that these bounds are automatically fulfilled once

the constraints from neutrino physics are taken into account similar to the case of

models with bilinear R-parity breaking [71].

• Bounds on the masses of the Higgs bosons [31, 72]. For this purpose we have added

the dominant 1-loop correction to the (2,2) entry of the scalar mass matrix in ap-

pendix A.2. Moreover, we have checked in the 1 ν̂c-model with the help of the program

NMHDECAY [49] that in the NMSSM limit the experimental constraints are fulfilled.

• Constraints on the chargino and charged slepton masses given by the PDG [31].
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parameter best fit 2-σ

∆m2
21[10

−5eV2] 7.65+0.23
−0.20 7.25 − 8.11

|∆m2
31|[10−3eV2] 2.40+0.12

−0.11 2.18 − 2.64

sin2 θ12 0.304+0.022
−0.016 0.27 − 0.35

sin2 θ23 0.50+0.07
−0.06 0.39 − 0.63

sin2 θ13 0.01+0.016
−0.011 ≤ 0.040

Table 1. Best-fit values with 1-σ errors and 2-σ intervals (1 d.o.f.) taken from [12]. In the following

we will refer to these angles as θ12 = θsol, θ23 = θatm and θ13 = θR.

• The bounds on squark and gluino masses from TEVATRON [31] are automatically

fulfilled by our choices of the study points.

The smallness of the Rp/ parameters guarantees that the direct production cross sections

for the SUSY particles are very similar to the corresponding MSSM/NMSSM values. Note

that for low values of λ the singlet states are decoupled from the rest of the particles,

leading to low production rates.

4 Phenomenology of the 1 ν̂c-model

In this section we discuss the phenomenology of the 1 ν̂c-model, including mass hierarchies,

mixings in the scalar and fermionic sectors, decays of the scalar and fermionic states and

the correlations between certain branching ratios and the neutrino mixing angles.

In the following discussion we call a neutralino χ̃0
l a bino (singlino) if |Nl+3,1|2 > 0.5

(|Nl+3,5|2 > 0.5). As discussed below, light scalar S0
m or pseudoscalar states P 0

m appear,

especially in case of the singlino being the lightest neutralino. In the following we discuss

possible mass hierarchies and mixings in more detail.

The diagonal entry of the singlet right-handed neutrino in the mass matrix of the

neutral fermions is MR = 1√
2
κvR, see appendix A.4. A singlino as lightest neutralino is

obtained by choosing small values for κ and/or vR. Since the masses of the four MSSM

neutralinos are mainly fixed by the chosen SPS point, we can either generate a bino-like or

a singlino-like lightest neutralino by varying κ and/or vR, where the latter case means a

variation of λ due to a fixed µ-parameter. A light singlet scalar and/or pseudoscalar can be

obtained by appropriate choices of Tλ and Tκ. An example spectrum is shown in figure 3.

The MSSM parameters have been chosen according to SPS1a’ except for µ = 150 GeV. The

scalar state S0
2 = h0 can easily get too light to be consistent with current experimental

data, although the production rate e+e− → ZS0
2 is lowered, since a mixing with the lighter

singlet scalar S0
1 = ν̃c reduces its mass. By reducing µ the mixing can be lowered (see mass

matrices) and this problem can be solved.

Another example spectrum for neutral fermions is shown in figure 4. Again SPS1a’

parameters have been chosen, except µ = 170 GeV. As the figure demonstrates for this

reduced value of µ the states are usually quite mixed, which is important for their decay
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Figure 3. Masses of the lightest neutralinos χ̃0
l and the lightest scalar S0

1 = Re(ν̃c)/pseudoscalar

P 0
1 = Im(ν̃c

1) as a function of Aκ = Tκ/κ for λ = 0.24, κ = 0.12, µ = 150GeV and Tλ = 360GeV

for SPS1a’. The different colors refer to the singlino χ̃0
1 (blue), the bino χ̃0

2 (red), the singlet scalar

S0
1 (black) and the singlet pseudoscalar P 0

1 (green).

properties, as discussed below. Note that the abrupt change in composition in χ̃0
3 is due

to the level crossing in the mass eigenstates.

The decay properties of the lightest scalars/pseudoscalars are in general quite similar

to those found in the NMSSM [50, 62]. The lightest doublet Higgs boson similar to the h0

decays mainly like in the MSSM, apart from the possible final state 2χ̃0
1, if kinematically

possible. An example is shown in figure 5, which display the branching ratios of S0
2 = h0

versus m(χ̃0
1). χ̃

0
1 in this plot is mainly a singlino (see figure 4), variation of κ varies its

mass, since vR is kept fixed here. In contrast to the NMSSM this does not lead to an

invisible Higgs, since the neutralinos themselves decay. For the range of parameters where

the decay to 2χ̃0
1 is large, χ̃0

1 decays mainly to νbb, leading to the final state 4 b-jets plus

missing energy. Note that the S0
1 which is mainly singlet here decays dominantly to bb̄ final

states, followed by ττ final states.

4.1 Decays of a gaugino-like lightest neutralino

We first consider the case of a bino as lightest neutralino. Although m(χ̃0
1) > mW in the

SPS points we have chosen, two-body decay modes are not necessarily dominant. The three-

body decay χ̃0
1 → liljν dominated by a virtual τ̃ also can have a sizeable branching ratio, see

table 2 and figure 7. The importance of this final state can be understood from the Feynman

graph shown in figure 6, giving the dominant contribution due to H̃−
d -li-mixing (li = e, µ).

In the case li = τ there’s an additional contribution due to H̃0
d -ν-mixing. As figure 7

shows there exist parameter combinations in the λ-κ-plane, where the decay mode χ̃0
1 →

liljν is more important than χ̃0
1 → Wl. The strong variation in the branching ratios for

SPS1a’ is mainly due to the strong dependence of the partial decay width of χ̃0
1 → liljν,

where the decays with i = j and i 6= j both play a role. Other important final states

are χ̃0
1 → Zν and in case of a light scalar with m(χ̃0

1) > m(h0) the decay χ̃0
1 → h0ν, as

demonstrated in table 2.
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Figure 4. Masses and particle characters of the lightest neutralinos χ̃0
l as a function of κ for

λ = 0.24, µ = 170GeV, Tλ = 360GeV and Tκ = −κ · 50GeV for SPS1a’. The different colors refer

to singlino purity |Nl+3,5|2 (blue), bino purity |Nl+3,1|2 (red), wino purity |Nl+3,2|2 (black) and

higgsino purity |Nl+3,3|2 + |Nl+3,4|2 (green).

Br(χ̃0
1) SPS1a’ SPS3 SPS4

Wl 23 − 80 12 − 55 68 − 72

liljν 11 − 75 2 − 31 2.6 − 3.9

Zν 2.2 − 8.9 5 − 28 25 − 28

h0ν − 15 − 53 < 2.0

Decay length [mm] 1.6 − 7.0 0.1 − 0.5 1.4 − 1.6

Table 2. Branching ratios (in %) and total decay length in mm of the decay of the lightest bino-like

neutralino for different values of λ ∈ [0.02, 0.5] and κ ∈ [0.1, 0.6] with a dependence of allowed κ(λ)

similar to [52] and to figure 7 and Tλ = λ · 1.5TeV and Tκ = −κ · 100GeV.

In the µνSSM one finds correlation between the decays of the lightest neutralino and

the neutrino mixing angles, because neutralino couplings depend on the same Rp/ parameters

as the neutrino masses. Figure 8 shows the correlation between the branching ratios of

the decay χ̃0
1 → Wl as a function of the atmospheric angle. Although a clear correlation
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1χ̃

0
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Figure 6. Dominant Feynman graph for the decay χ̃0
1 → liτν with li = e, µ.

is visible it is not as pronounced as in the n generation case, see below and [53], due to

inclusion of 1-loop effects in the neutrino masses and mixing angles.

Also the three-body decay χ̃0
1 → liljν exemplifies a correlation with neutrino physics.

However, this decay is connected to the solar angle, see figure 9. There are two main

contributions to this final state: χ̃0
1 →Wl→ liljν and χ̃0

1 → τ̃∗l → liljν. While the former

is mainly sensitive to Λi, the latter is dominated by ǫi-type couplings (see figure 6), causing

the connection to solar neutrino angle. In case the W is on-shell as in the SPS1a’ point,

one could in principle devise kinematical cuts reducing this contribution. Such a cut can

significantly improve the quality of the correlation.

The SU4 scenario of the ATLAS collaboration [69] has a very light SUSY spectrum

close to the Tevatron bound with a bino-like neutralino m(χ̃0
1) ≈ 60 GeV. Thus, for SU4

the lightest neutralino has only three-body decay modes. Most important branching ratios

are shown in figure 10. The lightness of the bino-like neutralino χ̃0
1 in this scenario implies

a larger average decay length of (8 − 90) cm, depending on the parameter point in the λ-

κ-plane. Note that the decay length becomes smaller for smaller values of λ, κ. In general

the decay length scales as L ∝ m−4(χ̃0
1) for m(χ̃0

1) < mW . Also for this point a correla-
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Figure 8. Ratio
Br(χ̃0

1
→Wµ)

Br(χ̃0

1
→Wτ)

versus tan2 θatm for different SPS scenarios (SPS1a’ (black), SPS3

(red), SPS4 (green)) and for different values of λ ∈ [0.02, 0.5] and κ ∈ [0.1, 0.6] with a dependence

of allowed κ(λ) similar to [52] and to figure 7 and Tλ = λ · 1.5TeV and Tκ = −κ · 100GeV.

tion between the branching ratios and the neutrino mixing angles is found as illustrated

in figure 11.

In addition to the SUGRA scenarios discussed up to now we have also studied SPS9,

which is a typical AMSB point. The most important difference between this point and the

previously discussed cases is the near degeneracy between lightest neutralino and lightest

chargino. This near degeneracy is the reason that the chargino decay is dominated by

Rp/ final states. Varying λ and κ as before we find a total decay length of (0.12 − 0.16)mm

with Br(χ̃±
1 →Wν) = (42−57)%, Br(χ̃±

1 → Zl) = (20−26)% and Br(χ̃±
1 → h0l) = (17−

40)%. This is especially interesting since, similar to Wl in case of the gaugino-like lightest

neutralino, the decay to Zl of the chargino is linked to the atmospheric angle, see figure 12.
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Figure 10. Decay branching ratios for bino-like lightest neutralino as a function of κ for λ ∈
[0.02, 0.5], Tλ = λ · 1.5TeV, Tκ = −κ · 100GeV and for MSSM parameters defined by the study

point SU4 of the ATLAS collaboration [69]. The colors indicate the different final states: liljν

(red), lqiqj (black), νqq̄ (blue) and 3ν (orange).

4.2 Decays of a singlino-like lightest neutralino

We now turn to the case of a singlino-like LSP. As already explained, this scenario is

connected to a light singlet scalar and pseudoscalar. Recall, that the particles in the

fermionic sector are mixed for λ, κ = O(10−1) due to the reduced µ-parameter as can be

seen in figure 4. We will first discuss the average decay length of the lightest neutralino

χ̃0
1. Figure 13 shows the average decay length in meter for different SPS scenarios as a

function of the mass of the lightest neutralino m(χ̃0
1). Composition of the neutralino is

indicated by colour code, as given in the caption. λ, κ, Tκ and µ are varied in this plot.

Note that by variation of Tκ the parameter points in figure 13 are chosen in such a way,

that all scalar and pseudoscalar states are heavier than the lightest neutralino. Singlino

purity in this plot increases with decreasing mass and for pure singlinos the decay length
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Figure 11. To the left (a) ratio
Br(χ̃0

1
→µqiqj)

Br(χ̃0

1
→τqiqj)

versus tan2 θatm for the SU4 scenario of the ATLAS

collaboration [69] and to the right (b) ratio
Br(χ̃0

1
→eτν)

Br(χ̃0

1
→µτν)

versus tan2 θsol with same set of parameters

as (a). Bino purity |N41|2 > 0.94.
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Figure 12. Ratio
Br(χ̃±

1
→Zµ)

Br(χ̃±
1
→Zτ)

versus tan2 θatm for the AMSB scenario SPS9 and for different values

of λ ∈ [0.02, 0.5], κ ∈ [0.1, 0.6], Tλ = λ · 1.5TeV and Tκ = −κ · 100GeV.

is mainly determined by its mass and the experimentally determined neutrino masses. For

neutralino masses below about 50 GeV decay lengths become larger than 1 meter, implying

that a large fraction of neutralinos will decay outside typical collider detectors. Note that if

one allows for lighter scalar states so that at least one of the decays χ̃0
1 → S0

1(P 0
1 )ν appears,

the average decay length can be easily reduced by several orders of magnitude.

Again typical decays are Wl, lqiqj , Zν, νqq, liljν and the invisible decay to 3ν. For

the region of m(χ̃0
1) below the W threshold see figure 14. The dominance of νbb for smaller

values of m(χ̃0
1) is due to the decay chain χ̃0

1 → S0
1ν → νbb, whereas for larger values of

m(χ̃0
1) we find m(S0

1) > m(χ̃0
1). Final state ratios show correlations with neutrino physics

also in this case. As an example we show liljν branching ratios versus the solar neutrino

mixing angle in figure 15. Singlino purity for this plot |N45|2 ∈ [0.75, 0.83] and mass

m(χ̃0
1) ∈ [22, 53] GeV. The absolute values for the branching ratios are comparable to those
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1),m(P 0

1 )} < m(χ̃0
1) appear. Note

that the different colors stand for SPS1a’ (real singlino, |N45|2 > 0.5) (gray), SPS1a’ (mixture state)

(black), SPS3 (real singlino) (blue), SPS3 (mixture state) (red) and SPS4 (mixture state) (green).

35 40 45 50 55 60 65
10-2

10-1

100

B
r
(χ̃

0 1
=

ν
c
)

m(χ̃0
1)[GeV ]

liljν

νbb

νqq without νbb

3νlqiqj

Figure 14. Singlino decay branching ratios as a function of its mass, for the same parameter

choices as in figure 5. The colors indicate the different final states: νbb̄ (blue), liljν (red), lqiqj

(black), 3ν (orange) and νqq̄ (q 6= b, green).

of the described SU4 scenario with a bino-like lightest neutralino. We note that for the

parameters in figure 15 the light Higgs S0
2 = h0 decays to χ̃0

1χ̃
0
1 with a branching ratio of

Br(S0
2 = h0 → χ̃0

1χ̃
0
1) = (21 − 91)%.

Up to now we have considered values of λ and κ larger than 10−2. For very small

values of these couplings, the singlet sector, although very light, effectively decouples. This

implies that R-parity conserving decays of χ̃0
2, e.g. decays to final states like χ̃0

1S
0
1 , χ̃0

1P
0
1 ,

χ̃0
1l

+l− or χ̃0
1qq, are strongly suppressed and the Rp/ decay modes dominate, implying decays

with correlations as in the case of the explicit b-Rp/ .

– 22 –



J
H
E
P
0
5
(
2
0
0
9
)
1
2
0

10-1 100 101 102

100

101

B
r(

χ̃
0 1
→

eτ
ν
)/

B
r(

χ̃
0 1
→

µ
τ
ν
)

tan2 θsol

Figure 15. Ratio
Br(χ̃0

1
→eτν)

Br(χ̃0

1
→µτν)

versus tan2 θsol for the SPS1a’ scenario and λ ∈ [0.2, 0.5], µ ∈
[110, 170]GeV, κ = 0.035, Tλ = λ · 1.5TeV and Tκ = −0.7GeV.

5 Phenomenology of the n ν̂c-model

In the previous section the phenomenology for the one generation case of the model has

been worked out in detail. Most of the signals discussed so far are independent of the

number of right-handed neutrinos. However, the n generation variants also offer some

additional phenomenology, which we discuss here for the simplified case of n = 2.

In a model with one right-handed neutrino superfield a light singlino will always im-

ply a light scalar/pseudoscalar. This connection between the neutral fermion sector and

scalar/pseudoscalar sector is a well-known property of the NMSSM (see again [61, 62]).

In models with more than one generation of singlets, the off-diagonal Tκ terms in Equa-

tion (2.5) induce mixing between the different generations of singlet scalars and pseu-

doscalars. This opens up the possibility, not considered in previous publications [51–53],

to have the singlet scalars considerably heavier than the singlet fermions.

Let us illustrate this feature with a simple example. Imagine a light singlino νc
1, and

a heavy singlino νc
2, in a model with non-zero trilinear couplings T 112

κ . In that case, the

contributions to the mass of the ν̃c
1, scalar or pseudoscalar, coming from the large value

of vR2 are proportional to T 112
κ . Without these contributions the mass of ν̃c

1 would only

depend on the small vR1, thus making it light like the singlino of the same generation. With

non-zero T 112
κ the mass of both ν̃c

s are dominated by the larger of the vRs. This feature is

demonstrated in figure 16. In the two plots the lightest neutralino is mostly νc
1, with a mass

of ∼ 50 GeV. These plots show the dependence of the masses of the singlet scalar states

Re(ν̃c
1) and Re(ν̃c

2) and the corresponding pseudoscalar states Im(ν̃c
1) and Im(ν̃c

2) with vR2

for different values of T 112
κ = T 122

κ . The masses of the light Higgs boson h0 and the lightest

left-handed sneutrino Im(ν̃1) are also shown for reference. Note that for T 112
κ = T 122

κ = 0

the mass of the state Re(ν̃c
1) does not depend on vR2, whereas for T 112

κ = T 122
κ = −2GeV

the lightest singlet scalar becomes heavier for larger values of vR2. The same feature is

present in the pseudoscalar sector, where the effect is even more pronounced.
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Figure 16. Masses of the scalar states Re(ν̃c
1) (green), Re(ν̃c

2) (red) and h0 (blue) and the pseu-

doscalar states Im(ν̃c
1) (dashed green), Im(ν̃c

2) (dashed red) and Im(ν̃1) (dashed blue) as a function

of vR2 for different values of T 112
κ = T 122

κ . To the left (a) T 112
κ = T 122

κ = 0 whereas to the right (b)

T 112
κ = T 122

κ = −2GeV. The MSSM parameters have been taken such that the standard SPS1a’

point is reproduced. The light singlet parameters κ1 = 0.16 and vR1 = 500GeV ensure that in all

points the lightest neutralino is mostly νc
1, with a mass of 47− 48GeV. In addition, T 1

λ = 300GeV

and T 2
λ ∈ [10, 200]GeV.

5.1 Correlations with neutrino mixing angles in the n ν̂c-model

The connection between decays and neutrino angles is not a particular property of the 1

ν̂c-model and is also present in a general n ν̂c-model. However, since the structure of the

approximate couplings χ̃0
1 −W± − l∓i is different, see appendix B, we encounter additional

features for n = 2.

As explained in section 2.5.2, we have now two possibilities to fit neutrino data. If

the dominant contribution to the neutrino mass matrix comes from the ΛiΛj term in

Equation (2.44) one can link it to the atmospheric mass scale, using the αiαj term to

fit the solar mass scale. This case will be called option fit1. On the other hand, if the

dominant contribution is given by the αiαj term one has the opposite situation, where

the atmospheric scale is fitted by the αi parameters and the solar scale is fitted by the Λi

parameters. This case will be called option fit2.

For the case of a bino-like lightest neutralino one can show that the coupling is pro-

portional to Λi whereas for the case of a singlino-like lightest neutralino the dependence

is on αi, as shown in appendix B. Figure 17 shows the ratio Br(χ̃0
1 → Wµ)/Br(χ̃0

1 →
Wτ) versus tan2(θatm) (left) and Br(χ̃0

1 → We)/
√
Br(χ̃0

1 →Wµ)2 +Br(χ̃0
1 →Wτ)2 ver-

sus sin2(θR) (right) for a bino LSP and option fit1. The correlation with the atmo-

spheric angle and the upper bound on Br(χ̃0
1 →We)/

√
Br(χ̃0

1 → Wµ)2 +Br(χ̃0
1 →Wτ)2

from sin2(θR) is more pronounced than in the 1 ν̂c-model, because we fit neutrino data

with tree-level physics only. Recall that this implies that the ratio |~ǫ|2/|~Λ| is much

smaller than in the plots shown in the previous section. A correlation between Br(χ̃0
1 →

We)/
√
Br(χ̃0

1 →Wµ)2 +Br(χ̃0
1 →Wτ)2 and tan2(θsol) is found instead, if neutrino data

is fitted with option fit2, as figure 18 shows.
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Figure 17. To the left (a) ratio
Br(χ̃0

1
→Wµ)

Br(χ̃0

1
→Wτ)

versus tan2(θatm) and to the right (b) ratio

Br(χ̃0

1
→We)√

Br(χ̃0

1
→Wµ)2+Br(χ̃0

1
→Wτ)2

versus sin2(θR) for a bino LSP. Bino purity |N41|2 > 0.9. Neutrino

data is fitted using option fit1.

10-1 100 101

10-1

100

101

B
r(

χ̃
0 1→

W
e)

√ B
r(

χ̃
0 1→

W
µ
)2

+
B

r(
χ̃

0 1→
W

τ
)2

tan2(θsol)

Figure 18. Ratio
Br(χ̃0

1
→We)√

Br(χ̃0

1
→Wµ)2+Br(χ̃0

1
→Wτ)2

versus tan2(θsol) for a bino LSP. Bino purity |N41|2 >
0.9. Neutrino data is fitted using option fit2.

For the case of a singlino LSP the correlations and types of fit to neutrino data are

swapped with respect to the gaugino case. Since the couplings χ̃0
1 −W± − l∓i are mainly

proportional to αi, instead of Λi, a scenario with a singlino LSP and option fit1 (fit2) will

be similar to bino LSP and option fit2 (fit1). This similarity is demonstrated in figures 19

and 20. To decide which case is realized in nature, one would need to determine the particle

character of the lightest neutralino. This might be difficult at the LHC, but could be deter-

mined by a cross section measurement at the ILC. We want to note, that in the 2 ν̂c-model

we cannot reproduce all correlations for a singlino LSP presented for the 3 ν̂c-model in [53].

The results shown so far in this section were all calculated for the SPS1a’ scenario. We

have checked explicitly that for all the other standard points results remain unchanged. We

have also checked that for a LSP with a mass below mW the three-body decays χ̃0
1 → lqiq̄j,

mediated by virtual W bosons, show the same correlations.
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Figure 19. Ratio
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versus tan2(θsol) for a singlino LSP. Singlino purity

|N45|2 > 0.9. Neutrino data is fitted using option fit1.
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Figure 20. To the left (a) ratio
Br(χ̃0

1
→Wµ)

Br(χ̃0

1
→Wτ)

versus tan2(θatm) and to the right (b) ratio

Br(χ̃0

1
→We)√

Br(χ̃0

1
→Wµ)2+Br(χ̃0

1
→Wτ)2

versus sin2(θR) for a singlino LSP. Singlino purity |N45|2 > 0.9. Neu-

trino data is fitted using option fit2.

A final comment is in order. In a n ν̂c-model with n > 2, the effective neutrino mass

matrix will have additional terms with respect to (2.44), due to the contributions coming

from the new right-handed neutrinos. For this richer structure there is one additional

contribution to meff

νν
, which could be sub-dominant. Therefore, one can imagine a scenario

in which a third generation of singlets produces a negligible contribution to neutrino masses

while the corresponding singlino, νc
3, is the LSP. In such a scenario the correlations between

the νc
3 LSP decays and the neutrino mixing angles will be lost.

5.2 χ̃0
1 decay length and type of fit

As already discussed we have two different possiblities to fit neutrino data: ~Λ generates the

atmospheric mass scale and ~α the solar mass scale (case fit1), or vice versa (case fit2). It

turns out that the decay length of the lightest neutralino is sensitive to the type of fit, due

to the proportionality between its couplings with gauge bosons and the Rp/ parameters (see
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Figure 21. Decay length of the lightest neutralino and its dependence on the type of fit to neutrino

data. To the left (a) the decay length of the lightest neutralino versus m(χ̃0
1) for the case fit1 (red)

and the case fit2 (blue). To the right (b) the ratio L(fit1)/L(fit2) versus m(χ̃0
1). The MSSM

parameters have been taken such that the standard SPS1a’ point is reproduced. The light singlet

parameter κ is varied in the range κ ∈ [0.01, 0.1]. In all the points the lightest neutralino has a

singlino purity higher than 0.99.

appendix B for exact and approximated formulas of the couplings χ̃0
1 −W± − l∓i and their

simplified expressions in particular limits). For example, a singlino-like neutralino couples

to the gauge bosons proportionally to the αi parameters. This implies that its decay length

will follow L ∝ 1/|~α|2 and obeys the approximate relation

L(fit1)

L(fit2)
≃ matm

msol

≃ 6 . (5.1)

In figure 21 the decay length of the lightest neutralino and its dependence on the type of

fit to neutrino data is shown. Once mass and length are known this dependence can be

used to determine which parameters generate which mass scale. Note that this feature is

essentially independent of the MSSM parameters. However, this property is lost if either

the lightest neutralino has a sizeable gaugino/higgsino component or if there are singlet

scalars/pseudoscalars lighter than the singlino.

5.3 Several light singlets

In scenarios with two (or more) light singlets, the phenomenology has additional features.

The light Higgs boson h0 can decay with measurable branching ratios to pairs of right-

handed neutrinos of different generations. Similarly, the bino can decay to the different

light right-handed neutrinos.

In the following, the case of two light singlinos and two light scalars/pseudoscalars will

be considered. For the neutral fermion sector this implies that the mass eigenstates χ̃0
1 and

χ̃0
2 will always be the singlets νc

1 and νc
2 and the bino will be the χ̃0

3. In the scalar sector

one has two very light mostly singlet states S0
1 and S0

2 , which are consistent with the LEP

bounds. Finally, the state S0
3 will be the light doublet Higgs boson h0. One can also have

light singlet pseudoscalars.
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Figure 22. Branching ratios Br(χ̃0
3 = B̃0 → χ̃0

1) (red) and Br(χ̃0
3 = B̃0 → χ̃0

2) (blue) as a

function of the mass of the lightest neutralino for the scenario considered in section 5.3. The

MSSM parameters have been taken such that the standard SPS1a’ point is reproduced, whereas the

singlet parameters are chosen randomly in the ranges vR1, vR2 ∈ [400, 600]GeV, λ1, λ2 ∈ [0.0, 0.4],

T 111
κ = T 222

κ ∈ [−15,−1]GeV, T 112
κ = T 122

κ ∈ [−1.5,−0.005]GeV and T 1
λ , T

2
λ ∈ [0, 600]GeV.

κ1 = κ2 = 0.16 is fixed to ensure the lightness of the two singlinos.

The decays of a bino-like χ̃0
3 can be very important to distinguish between the one

generation model and models with more than one generation of singlets. In principle, the

most important decay channels strongly depend on the couplings of the bino to the two

generations of singlinos and the configuration of masses of singlinos and scalars. Therefore,

a general list of signals cannot be given. Nevertheless, there are some features which are

always present:

When kinematically allowed, the decays χ̃0
3 → χ̃0

1,2 S
0
1(P 0

1 ) dominate, with the sum of

the branching ratios typically larger than 50 %. The relative importance of the different

channels is mainly dictated by kinematics. This feature is illustrated in figure 22, where

these two quantities are shown as a function of the mass of the lighest neutralino. The

MSSM parameters are fixed to the standard point SPS1a’, with light singlet parameters

taken randomly. One can see that the relative importance of each singlino cannot be pre-

dicted in general, but both branching ratios are at least of order 10−3−10−4, given enough

statistics. For very light singlinos two-body decays including scalars and pseudoscalars are

open, and thus both Br(χ̃0
3 → χ̃0

1) and Br(χ̃0
3 → χ̃0

2) are close to 50%, as expected if the

values of the singlet parameters are of the same order for the two light generations. On the

other hand, if the mass of the lightest neutralino is increased some of the two-body decays

are kinematically forbidden, specially those of the χ̃0
2, which has to be produced through

three-body decays, leading to a suppresion in Br(χ̃0
3 → χ̃0

2). Note that it is also possible to

find points where the decay mode χ̃0
3 → χ̃0

1,2 S
0
2(P 0

2 ) has a branching ratio about 10%-20%,

giving additional information.

The other possible signals are the usual bino decays of the NMSSM. Final states with

standard model particles, like χ̃0
1,2l

+l− or χ̃0
1,2qq̄, become very important when the decays

to scalars and pseudoscalars are kinematically forbidden.

In addition, the decays of the light Higgs boson h0 can also play a very important role
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Figure 23. Higgs boson decays as a function of the mass of the lightest neutralino for the scenario

considered in section 5.3. To the left (a) the standard decay channel h0 → bb̄, whereas to the right

(b) the exotic decays to pairs of singlinos h0 → χ̃0
1χ̃

0
1 (red), h0 → χ̃0

1χ̃
0
2 (blue) and h0 → χ̃0

2χ̃
0
2

(black). The parameters are chosen as in figure 22.

in the study of the different generations, provided it can decay to final states including χ̃0
1

or χ̃0
2. In this case typically the standard Higgs boson decays are reduced to less than 40%,

completely changing the usual search strategies.

In figure 23 the branching ratios of standard and exotic Higgs boson decay channels

are shown. The left plot shows the suppressed branching ratio of the standard bb̄ channel.

The main decay channel is χ̃0
1 χ̃

0
1, but there is a sizeable branching ratio to χ̃0

1 χ̃
0
2. Note that

χ̃0
2 decays dominantly to χ̃0

1 plus two SM fermions. This feature allows us to distinguish

between the 1 ν̂c-model and models with more than one generation of singlets. Finally,

the branching ratio to χ̃0
2 χ̃

0
2 is small due to kinematics, but leads to interesting final states

with up to eight b-jets plus missing energy.

A final comment is in order. In these kind of scenarios with many light singlets χ̃0
1

decays to νbb̄ can be dominant. This will reduce the available statistics in the interesting

liljν and lqiqj channels. Moreover, the correlations are less pronounced due to mixing

effects in the singlet sector.

6 Discussion and conclusions

We have studied the phenomenology of the µνSSM. This proposal solves at the same time

the µ-problem of the MSSM and generates small neutrino masses, consistent with data

from neutrino oscillation experiments. Neutrino data put very stringent constraints on

the parameter space of the model. Both the left-sneutrino vacuum expectation values and

the effective bilinear parameters have to be small compared to MSSM soft SUSY breaking

parameters. As a result all SUSY production cross sections and all decay chains are very

similar to the NMSSM, the only, but phenomenologically very important, exceptions being

the decay of the LSP and NLSP (the latter only in some parts of the parameter space)

plus the decays of the lightest Higgses.
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We have discussed in some details two variants of the model. In the simplest version

with only one generation of singlets 1-loop corrections to the neutralino-neutrino mass

matrix need to be carefully calculated in order to explain neutrino data correctly. The

advantage of this minimal scheme is that effectively it contains only six new (combinations

of) Rp/ parameters, which can be fixed to a large extend by the requirement that oscillation

data is correctly explained. This feature of the model is very similar to explicit bilinear

R-parity breaking, although, as we have discussed, the relative importance of the different

1-loop contributions is different in the µνSSM and in bilinear Rp/ . Certain ratios of

decay branching ratios depend on the same parameter combinations as neutrino angles and

are therefore predicted from neutrino physics, to a large extend independent of NMSSM

parameters. We have also calculated the decay length of the LSP, which depends mostly on

the LSP mass and the (experimentally determined) neutrino masses. Lengths sufficiently

large to observe displaced vertices are predicted over most parts of the parameter space.

However, for neutralinos lighter than approximately 30 GeV, decay lengths become larger

than 10 meter, making the observation of Rp/ difficult for LHC experiments. However, if

there is a singlet scalar or pseudoscalar with a mass smaller than the lightest neutralino,

χ̃0
1 → S0

m(P 0
m)ν is the dominant decay mode and the corresponding decay lengths become

much smaller, such that the displaced vertex signature of Rp/ might even be lost in some

points of this part of parameter space. On the other hand, in case the mass of the lightest

scalar is larger than twice the singlino mass, the decay S0
m → 2χ̃0

1 becomes important, both

for S0
m ∼ ν̃c and S0

m ∼ h0. If this kinematical situation is realized also the Higgs search at

the LHC will definitely be affected.

The more involved n generation variants of the µνSSM can explain all neutrino data

at tree-level and therefore are calculationally simpler. Depending on the nature of the neu-

tralino, neutralino LSP decays show different correlations with either solar or atmospheric

neutrino angles. This is guaranteed in the two generation version of the model and likely,

but not always true, for n generations. If the NMSSM coupling λ is sufficiently small also

the NLSP has decays to Rp/ final states with potentially measurable branching ratios. In this

part of parameter space it seems possible, in principle, to test both solar and atmospheric

neutrino angles. If only the singlino(s) are light, i.e. the singlet scalars are heavier than,

say, the h0, the decay length of the singlino is very sharply predicted as a function of its

mass and either the solar or atmospheric neutrino mass scale. If both, singlinos and singlet

scalars (or pseudoscalars) are light, bino NLSP and h0 will decay not only to the lightest

singlinos/singlets but also to next-to-lightest states. This leads to enhanced multiplicities

in the final states and the possibility to observe multiple displaced vertices.

We now briefly discuss possible differences in collider phenomenology of the µνSSM

and other R-parity breaking schemes. Different models of R-parity breaking appear clearly

distinct at the Lagrangian level. However, at accelerator experiments it can be very hard

to distinguish the different proposals. This can be easily understood from the fact that for

a heavy singlet sector all Rp/ models approach necessarily the MSSM with explicit R-parity

breaking terms. It is therefore an interesting question to ask, what - if any - kind of signals

could exist, which at least might hint at which model is the correct description of Rp/ .

Given the large variety of possibilities and the very limited predictive power of the most

general cases, any discussion before the discovery of SUSY must be rather qualitative.
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First one should mention that not all Rp/ models explaining neutrino data show cor-

relations between LSP decay branching ratios and neutrino angles. Especially the large

number of free parameters in trilinear models exclude the possibility to make any definite

predictions. Rp/ models which do show such correlations, on the other hand, lead usually

to very similar predictions for the corresponding LSP decays. For example, fitting the

atmospheric data with tree-level Rp/ terms, a bino LSP in explicit bilinear models and in

the µνSSM decay with the same ratio of branching ratios into Wl (or lqiq̄j) final states.

Thus, to distinguish the different proposals other signals are needed.

We will briefly discuss the main differences in collider phenomenology between the

following three proposals: (i) MSSM with explicit bilinear terms (b-Rp/ ); (ii) Spontaneous

Rp/ (s-Rp/ ) model and (iii) µνSSM. Table 3 shows a brief summary of this comparison. Dif-

ferences occur in (a) the observability of a displaced vertex of the lightest neutralino decay;

(b) the upper limit on the branching ratio of the lightest neutralino decaying completely

invisible and (c) standard versus non-standard lightest Higgs decays.

The decay length of the lightest neutralino is fixed in both, the b-Rp/ model and the

µνSSM, essentially by the mass of the lightest neutralino and the experimentally deter-

mined neutrino masses. For m(χ̃0
1) larger than the W-mass decay lengths are typically of

the order of O(mm) and proportional to m−1(χ̃0
1). For lighter neutralinos, larger decay

lengths are expected, see figures 13 and 21, which scale like m−4(χ̃0
1). Shorter decay lengths

are not possible in b-Rp/ and possible in the µνSSM only if at least one (singlet) scalar or

pseudoscalar is lighter than χ̃0
1, when χ̃0

1 → S0
m(P 0

m)ν dominates. Since in the µνSSM the

singlet scalars decay with a short decay length to b̄b, one expects that in the µνSSM short

χ̃0
1 decay lengths correlate with the dominance of b̄b + missing energy final states. In the

s-Rp/ , on the other hand, the χ̃0
1 decay length can be shorter than in the b-Rp/ , due to the

new final state χ̃0
1 → J + ν, where J is the Majoron. Therefore, different from the µνSSM,

the neutralino decay length in the s-Rp/ model anti-correlates with the branching ratio for

the invisible neutralino decay.

Finally, in the b-Rp/ one expects that the decay properties of the lightest Higgs (h0)

are equal to the MSSM expectations, the only exception being the case when h0 → 2χ̃0
1 is

possible kinematically, in which the χ̃0
1 decays themselves can then lead to a non-standard

signal in the Higgs sector. This is different in s-Rp/ , where for a low-scale of spontaneous

R-parity breaking, the h0 can decay to two Majorons, i.e. large branching ratios of Higgs

to invisible particles are possible. In the µνSSM the h0 decays can be non-standard, if the

lightest singlino is lighter than m(h0)/2. However, since the singlinos decay, this will not

lead to an invisible Higgs, unless the mass of the singlino is so small, that the decays occur

outside the detector.

To summarize this brief discussion, b-Rp/ , s-Rp/ and µνSSM can, in principle, be

distinguished experimentally if the singlets are light enough to be observed in case of s-

Rp/ and µνSSM. We note in passing that we have not found any striking differences in

collider phenomenology of the µνSSM and the NMSSM with explicit bilinear terms.

In conclusion, the µνSSM offers a very rich phenomenology. Especially scenarios with

light singlets deserve further, much more detailed studies.
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Displaced vertex Comment Br(invisible) Higgs decays

b-Rp/ Yes Visible ≤ 10 % standard

s-Rp/ Yes/No
anti-correlates

any
non-standard

with invisible (invisible)

µνSSM Yes/No
anti-correlates ≤ 10 % non-standard

with non-standard Higgs

Table 3. Comparison of displaced vertex signal, completely invisible final state branching ratios for

LSP decays and lightest Higgs decays for three different R-parity violating models. For a discussion

see text.
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A Mass matrices

In the scalar mass matrices shown below the tadpole equations have not yet been used to

reduce the number of free parameters.

A.1 Charged scalars

In the basis

(
S+′)T

= ((H−
d )∗,H+

u , ẽ
∗
L, µ̃

∗
L, τ̃

∗
L, ẽR, µ̃R, τ̃R)

(
S−′)T

= (H−
d , (H

+
u )∗, ẽL, µ̃L, τ̃L, ẽ

∗
R, µ̃

∗
R, τ̃

∗
R) (A.1)

the scalar potential includes the term

V ⊃
(
S−′)T

M2
S±S

+′
, (A.2)

where M2
S± is the (8× 8) mass matrix of the charged scalars. In the ξ = 0 gauge it can be

written as

M2
S± =

(
M2

HH

(
M2

Hl̃

)†

M2
Hl̃

M2
l̃l̃

)
. (A.3)
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The (2 × 2) M2
HH matrix is given by:

(
M2

HH

)
11

= m2
Hd

+
1

8
[(g2 + g′2)v2

d + (g2 − g′2)(v2
u − v2

1 − v2
2 − v2

3)]

+
1

2
λsλ

∗
t vRsvRt +

1

2
vi

(
hEh

†
E

)
ij
vj

(
M2

HH

)
12

=
1

4
g2vuvd −

1

2
λsλ

∗
svuvd +

1

4
λsκ

∗
sv

2
Rs +

1

2
vuviλs(h

is
ν )∗ +

1√
2
vRsT

s
λ

(
M2

HH

)
21

=
(
M2

HH

)∗
12

(
M2

HH

)
22

= m2
Hu

+
1

8
[(g2 + g′2)v2

u + (g2 − g′2)(v2
d + v2

1 + v2
2 + v2

3)]

+
1

2
λsλ

∗
t vRsvRt +

1

2
vRsvRth

is
ν (hit

ν )∗ (A.4)

The (6 × 2) matrix that mixes the charged Higgs bosons with the charged sleptons is

M2
Hl̃

=

(
M2

HL

M2
HR

)
(A.5)

with:

(
M2

HL

)
i1

=
1

4
g2vdvi −

1

2
λ∗sh

it
ν vRsvRt −

1

2
vd

(
hEh

†
E

)
ij
vj

(
M2

HL

)
i2

=
1

4
g2vuvi −

1

4
κ∗sv

2
Rsh

is
ν +

1

2
vuvdλ

∗
sh

is
ν − 1

2
vuvjh

is
ν (hjs

ν )∗ − 1√
2
vRsT

is
hν

(
M2

HR

)
i1

= −1

2
vuvRs(h

∗
E)jih

js
ν − 1√

2
vj(T

∗
E)ji

(
M2

HR

)
i2

= −1

2
λsvRsvj(h

∗
E)ji −

1

2
vd(h

∗
E)jih

js
ν vRs (A.6)

Finally, the (6 × 6) mass matrix of the charged sleptons can be written as

M2
l̃l̃

=

(
M2

LL M2
LR

M2
RL M2

RR

)
(A.7)

with:

(
M2

LL

)
ij

=
(
m2

L̃

)
ij

+
1

8
(g′2 − g2)(v2

d − v2
u + v2

1 + v2
2 + v2

3)δij +
1

4
g2vivj

+
1

2
v2
d

(
hEh

†
E

)
ij

+
1

2
vRsvRth

is
ν (hjt

ν )∗

M2
LR = −1

2
λ∗svRsvuhE +

1√
2
vdTE

M2
RL =

(
M2

LR

)†

(
M2

RR

)
ij

=
(
m2

R̃

)
ij

+
1

4
g′2(v2

u − v2
d − v2

1 − v2
2 − v2

3)δij

+
1

2
v2
d

(
h†EhE

)
ij

+
1

2
vkvm

(
h†E
)
ik

(
hE

)
mj

(A.8)
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A.2 Neutral scalars

In the basis (
S0′)T = Re(H0

d ,H
0
u, ν̃

c
s , ν̃i) (A.9)

the scalar potential includes the term

V ⊃
(
S0′)TM2

S0S
0′ (A.10)

and the ((5 + n) × (5 + n)) neutral scalar mass matrix can be written as

M2
S0 =




M2
HH M2

HS M2
HL̃(

M2
HS

)T
M2

SS M2
L̃S(

M2
HL̃

)T (
M2

L̃S

)T
M2

L̃L̃


 . (A.11)

The matrix elements are given as follows:

(
M2

HH

)
11

= m2
Hd

+
1

8
(g2 + g′2)(3v2

d − v2
u + v2

1 + v2
2 + v2

3)

+
1

2
λsλ

∗
t vRsvRt +

1

2
v2
uλsλ

∗
s

(
M2

HH

)
12

= −1

4
(g2 + g′2)vdvu + λsλ

∗
svdvu − 1

8
v2
Rs(λsκ

∗
s + h.c.)

−1

2
vuvi(λ

∗
sh

is
ν + h.c.) − 1

2
√

2
vRs(T

s
λ + h.c.)

(
M2

HH

)
21

=
(
M2

HH

)
12

(
M2

HH

)
22

= m2
Hu

− 1

8
(g2 + g′2)(v2

d − 3v2
u + v2

1 + v2
2 + v2

3)

+
1

2
λsλ

∗
t vRsvRt +

1

2
v2
dλsλ

∗
s +

1

2
vRsvRth

is
ν (hit

ν )∗ +
1

2
vivj(h

is
ν )∗hjs

ν

−1

2
vdvi(λ

∗
sh

is
ν + h.c.) (A.12)

(
M2

HS

)
1s

= −1

4
vuvRs(λ

∗
sκs + h.c.) +

1

2
vdvRt(λsλ

∗
t + h.c.)

− 1

2
√

2
vu(T s

λ + h.c.) − 1

4
vivRt(λ

∗
sh

it
ν + λ∗th

is
ν + h.c.)

(
M2

HS

)
2s

= −1

4
vdvRs(λ

∗
sκs + h.c.) +

1

2
vuvRt(λsλ

∗
t + h.c.)

− 1

2
√

2
vd(T

s
λ + h.c.) +

1

2
√

2
vt(T

ts
hν

+ h.c.) +
1

4
vRsvi(κ

∗
sh

is
ν + h.c.)

+
1

2
vuvRt[h

is
ν (hit

ν )∗ + h.c.] (A.13)

(
M2

HL̃

)
1i

=
1

4
(g2 + g′2)vdvi −

1

4
v2
u(λ∗sh

is
ν + h.c.) − 1

4
vRsvRt(λ

∗
sh

it
ν + h.c.)

(
M2

HL̃

)
2i

= −1

4
(g2 + g′2)vuvi +

1

8
v2
Rs(κ

∗
sh

is
ν + h.c.) − 1

2
vuvd(λ

∗
sh

is
ν + h.c.)

+
1

2
vuvj [h

js
ν (his

ν )∗ + h.c.] +
1

2
√

2
vRs(T

is
hν

+ h.c.) (A.14)
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(
M2

SS

)
st

=
1

2
[(m2

ν̃c)st + (m2
ν̃c)ts] +

1

4
(λsλ

∗
t + h.c.)(v2

d + v2
u) − 1

4
vdvu(λ∗sκs + h.c.)δst

+
3

4
κsκ

∗
sv

2
Rsδst +

1

4
vuvi(κ

∗
sh

is
ν + h.c.)δst +

1

4
v2
u[(his

ν )∗hit
ν + h.c.]

+
1

4
vivj[(h

is
ν )∗hjt

ν + h.c.] − 1

4
vdvi[λ

∗
sh

it
ν + λt(h

is
ν )∗ + h.c.]

+
1

2
√

2
vRu(T stu

κ + h.c.) (A.15)

(
M2

L̃S

)
si

=
1

4
vuvRs(κ

∗
sh

is
ν + h.c.) − 1

4
vdvRt(λ

∗
sh

it
ν + λ∗th

is
ν + h.c.)

+
1

2
√

2
vu(T is

hν
+ h.c.) +

1

4
vjvRt[h

jt
ν (his

ν )∗ + hjs
ν (hit

ν )∗ + h.c.] (A.16)

(
M2

L̃L̃

)
ij

=
1

2
[(m2

L)ij + (m2
L)ji] +

1

8
(g2 + g′2)(v2

d − v2
u + v2

1 + v2
2 + v2

3)δij

+
1

4
(g2 + g′2)vivj +

1

4
v2
u[his

ν (hjs
ν )∗ + h.c.] +

1

4
vRsvRt[h

is
ν (hjt

ν )∗ + h.c.] (A.17)

A.3 Pseudoscalars

In the basis (
P 0′)T = Im(H0

d ,H
0
u, ν̃

c
s , ν̃i) (A.18)

the scalar potential includes the term

V ⊃
(
P 0′)TM2

P 0P
0′ (A.19)

and the ((5 + n) × (5 + n)) pseudoscalar mass matrix can be written as

M2
P 0 =




M2
HH M2

HS M2
HL̃(

M2
HS

)T
M2

SS M2
L̃S(

M2
HL̃

)T (
M2

L̃S

)T
M2

L̃L̃


 . (A.20)

The matrix elements are given as follows:

(
M2

HH

)
11

= m2
Hd

+
1

8
(g2 + g′2)(v2

d − v2
u + v2

1 + v2
2 + v2

3)

+
1

2
λsλ

∗
t vRsvRt +

1

2
v2
uλsλ

∗
s

(
M2

HH

)
12

=
1

8
v2
Rs(λsκ

∗
s + h.c.) +

1

2
√

2
vRs(T

s
λ + h.c.)

(
M2

HH

)
21

=
(
M2

HH

)
12

(
M2

HH

)
22

= m2
Hu

− 1

8
(g2 + g′2)(v2

d − v2
u + v2

1 + v2
2 + v2

3)

+
1

2
λsλ

∗
t vRsvRt +

1

2
v2
dλsλ

∗
s +

1

2
vRsvRth

is
ν (hit

ν )∗ +
1

2
vivj(h

is
ν )∗hjs

ν

−1

2
vdvi(λ

∗
sh

is
ν + h.c.) (A.21)
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(
M2

HS

)
1s

= −1

4
vuvRs(λ

∗
sκs + h.c.) +

1

4

∑

t6=s

vivRt(λ
∗
sh

it
ν − λ∗th

is
ν + h.c.)

+
1

2
√

2
vu(T s

λ + h.c.)

(
M2

HS

)
2s

= −1

4
vdvRs(λ

∗
sκs + h.c.) +

1

4
vRsvi(κ

∗
sh

is
ν + h.c.)

+
1

2
√

2
vd(T

s
λ + h.c.) − 1

2
√

2
vi(T

is
hν

+ h.c.) (A.22)

(
M2

HL̃

)
1i

= −1

4
v2
u(λ∗sh

is
ν + h.c.) − 1

4
vRsvRt(λ

∗
sh

it
ν + h.c.)

(
M2

HL̃

)
2i

= −1

8
v2
Rs(κ

∗
sh

is
ν + h.c.) − 1

2
√

2
vRs(T

is
hν

+ h.c.) (A.23)

(
M2

SS

)
st

=
1

2
[(m2

ν̃c)st + (m2
ν̃c)ts] +

1

4
(λsλ

∗
t + h.c.)(v2

d + v2
u) +

1

4
vdvu(λ∗sκs + h.c.)δst

+
1

4
κsκ

∗
sv

2
Rsδst −

1

4
vuvi(κ

∗
sh

is
ν + h.c.)δst +

1

4
v2
u[(his

ν )∗hit
ν + h.c.]

+
1

4
vivj[(h

is
ν )∗hjt

ν + h.c.] − 1

4
vdvi[λ

∗
sh

it
ν + λt(h

is
ν )∗ + h.c.]

− 1

2
√

2
vRu(T stu

κ + h.c.) (A.24)

(
M2

L̃S

)
si

=
1

4
vuvRs(κ

∗
sh

is
ν + h.c.) +

1

4

∑

t6=s

vdvRt(λ
∗
th

is
ν − λ∗sh

it
ν + h.c.)

+
1

4

∑

t6=s

vjvRt[h
js
ν (hit

ν )∗ − hjt
ν (his

ν )∗ + h.c.] − 1

2
√

2
vu(T is

hν
+ h.c.) (A.25)

(
M2

L̃L̃

)
ij

=
1

2
[(m2

L)ij + (m2
L)ji] +

1

8
(g2 + g′2)(v2

d − v2
u + v2

1 + v2
2 + v2

3)δij

+
1

4
v2
u[his

ν (hjs
ν )∗ + h.c.] +

1

4
vRsvRt[h

is
ν (hjt

ν )∗ + h.c.] (A.26)

A.4 Neutral Fermions

In the basis
(
ψ0
)T

=
(
B̃0, W̃ 0

3 , H̃
0
d , H̃

0
u, ν

c
s , νi

)
(A.27)

the lagrangian of the model includes the term

L ⊃ −1

2

(
ψ0
)TMnψ

0 + h.c. (A.28)

with the ((7 + n)× (7 + n)) mass matrix of the neutral fermions, which can be written as:

Mn =




Mχ̃0 mχ̃0νc mχ̃0ν

mT
χ̃0νc MR mD

mT
χ̃0ν mT

D 0


 (A.29)
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Mχ̃0 is the usual mass matrix of the neutralinos in the MSSM

Mχ̃0 =




M1 0 −1
2
g′vd

1
2
g′vu

0 M2
1
2
gvd −1

2
gvu

−1
2
g′vd

1
2
gvd 0 −µ

1
2
g′vu −1

2
gvu −µ 0


 (A.30)

with

µ =
1√
2
λsvRs . (A.31)

The mixing between the neutralinos and the singlet νc
s is given by

(mT
χ̃0νc)s =

(
0 0 − 1√

2
λsvu − 1√

2
λsvd + 1√

2
vih

is
ν

)
. (A.32)

mχ̃0ν is the neutralino-neutrino mixing part

mT
χ̃0ν =




−1
2
g′v1

1
2
gv1 0 ǫ1

−1
2
g′v2

1
2
gv2 0 ǫ2

−1
2
g′v3

1
2
gv3 0 ǫ3


 (A.33)

with

ǫi =
1√
2

n∑

s=1

vRsh
is
ν . (A.34)

The neutrino Dirac term is

(mD)is =
1√
2
his

ν vu (A.35)

and finally MR is

(MR)st =
1√
2
κsvRsδst . (A.36)

A.5 Charged Fermions

In the basis

(
ψ−)T =

(
W̃−, H̃−

d , e, µ, τ
)

(
ψ+
)T

=
(
W̃+, H̃+

u , e
c, µc, τ c

)
, (A.37)

the (5 × 5) mass matrix of the charged fermions is given by

Mc =




M2
1√
2
gvu 0 0 0

1√
2
gvd µ − 1√

2
hi1

Evi − 1√
2
hi2

Evi − 1√
2
hi3

Evi

1√
2
gv1 −ǫ1 1√

2
h11

E vd 0 0
1√
2
gv2 −ǫ2 0 1√

2
h22

E vd 0
1√
2
gv3 −ǫ3 0 0 1√

2
h33

E vd




. (A.38)
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B Coupling χ̃0

1
− W ±

− l
∓
i

Approximate formulas for the coupling χ̃0
1 −W± − l∓i can be obtained from the general

χ̃0
i −W± − χ̃∓

j interaction lagrangian

L ⊃ χ̃−
i γ

µ
(
Ocnw

Lij PL +Ocnw
Rij PR

)
χ̃0

jW
−
µ + χ̃0

i γ
µ
(
Oncw

Lij PL +Oncw
Rij PR

)
χ̃−

j W
+
µ , (B.1)

where

Ocnw
Li1 = g

[
−Ui1N ∗

12 −
1√
2

(
Ui2N ∗

13 +

3∑

k=1

Ui,2+kN ∗
1,5+k

)]

Ocnw
Ri1 = g

(
−V∗

i1N12 +
1√
2
V∗

i2N14

)

Oncw
L1j =

(
Ocnw

Lj1

)∗

Oncw
R1j =

(
Ocnw

Rj1

)∗
. (B.2)

The matrix N diagonalizes the neutral fermion mass matrix (see appendix (A.4)) while

the matrices U and V diagonalize the charged fermion mass matrix (see appendix (A.5)).

As was already mentioned for the case of neutral fermions in section 2.5, it is possible

to diagonalize the mass matrices in very good approximation due to the fact that the

Rp/ parameters are small. Defining the matrices ξ, ξL and ξR, that will be taken as expansion

parameters, one gets the leading order expressions

N =

(
N NξT

−V T ξ V T

)
, U =

(
Uc Ucξ

T
L

−ξL I3

)
, V =

(
Vc Vcξ

T
R

−ξR I3

)
, (B.3)

where I3 is the (3 × 3) identity matrix. The expansion matrices ξL and ξR are

(ξL)i1 =
gΛi√
2Det+

(ξL)i2 = −ǫi
µ
− g2vuΛi

2µDet+

(ξR)i1 =
gvdh

ii
E

2Det+

[
vuǫi
µ

+

(
2µ2 + g2v2

u

)
Λi

2µDet+

]

(ξR)i2 = −
√

2vdh
ii
E

2Det+

[
M2ǫi
µ

+
g2 (vdµ+M2vu) Λi

2µDet+

]
, (B.4)

where Det+ = −1
2
g2vdvu + M2µ is the determinant of the MSSM chargino mass matrix,

µ = 1√
2
λsvRs and ǫi = 1√

2
vRsh

is
ν . The expressions for the matrix ξ depend on the number

of singlet generations in the model. Particular cases can be found in (2.31) and (2.39).
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Using the previous equations and assuming that all parameters are real , one gets the

approximate formulas

Ocnw
Li1 =

g√
2

[
gN12Λi

Det+
−
(
ǫi
µ

+
g2vuΛi

2µDet+

)
N13 −

n∑

k=1

N1kξik

]

Ocnw
Ri1 =

1

2
g(hE)ii

vd

Det+

[
gvuN12 −M2N14

µ
ǫi+

g(2µ2+ g2v2
u)N12 − g2(vdµ+M2vu)N14

2µDet+
Λi

]

Oncw
Li1 =

(
Ocnw

Li1

)∗

Oncw
Ri1 =

(
Ocnw

Ri1

)∗
. (B.5)

It is important to emphasize that all previous formulas, and the following simplified ver-

sions, are tree-level results. More simplified formulas are possible if the lightest neutralino

has a large component in one of the gauge eigenstates. These particular limits are of great

interest to understand the phenomenology:

Bino-like χ̃0

1
. This limit is caracterized by N2

11 = 1 and N1m = 0 for m 6= 1. One gets

Ocnw
Li1 = − g√

2
ξi1

Ocnw
Ri1 = 0 . (B.6)

For the 1 ν̂c-model this implies that a bino-like χ̃0
1 couples to Wli proportionally to Λi, see

Equation (2.31), without any dependence on the ǫi parameters.

On the other hand, for the 2 ν̂c-model, the more complicated structure of the ξ matrix,

see Equations (2.39) and (2.43), implies a coupling of a bino-like χ̃0
1 with Wli dependent

on two pieces, one proportional to Λi and one proportional to αi:

ξi1 =
2g′M2µ

mγ
(aΛi + bαi) (B.7)

However, a simple estimate of the relative importance of these two terms is possible.

By assuming that all masses are at the same scale mSUSY, the couplings κ and λ are of

order 0.1, and the Rp/ terms hi
ν and vi are of order hRp/ and mSUSYhRp/ respectively, one can

show that aΛi ∼ 200bαi. Therefore, one gets a coupling which is proportional, in very good

approximation, to Λi, as confirmed by the exact numerical results shown in the main part

of the paper. Similar arguments apply for models with more generations of right-handed

neutrinos.

In conclusion, for a bino-like neutralino the coupling χ̃0
1 −W± − l∓i is proportional to

Λi to a good approximation.

Higgsino-like χ̃0

1
. This limit is caracterized by N2

13 +N2
14 = 1 and N1m = 0 for m 6= 3, 4.

If the coupling Ocnw
Ri1 is neglected due to the supression given by the charged lepton Yukawa

couplings, one gets

Ocnw
Li1 = − g√

2

[(
ǫi
µ

+
g2vuΛi

2µDet+
+ ξi3

)
N13 + ξi4Ni4

]

Ocnw
Ri1 ≃ 0 . (B.8)
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Equations (2.31) and (2.39) show that the ǫi terms cancel out in the coupling (B.8), and

therefore one gets dependence only on Λi in the 1 ν̂c-model, and (Λi, αi) in the 2 ν̂c-

model. However, this cancellation is not perfect in Ocnw
Ri1 and thus one still has some

dependence on ǫi.

Singlino-like χ̃0

1
. The limit in which the right-handed neutrino νc

s is the lightest neu-

tralino is caracterized by N2
1m = 1 for m ≥ 5 and N1l = 0 for l 6= m. One gets

Ocnw
Li1 = − g√

2
ξim

Ocnw
Ri1 = 0 . (B.9)

For the 1 ν̂c-model this expression implies that a pure singlino-like χ̃0
1 couples to Wli

proportional to Λi, see Equation (2.31), without any dependence on the ǫi parameters.

This proportionality to Λi is different to what is found in spontaneous R-parity violation,

where the different structure of the corresponding ξ matrix [73] implies that the singlino

couples to Wli proportionally to ǫi.

For the n ν̂c-model one finds that the coupling χ̃0
1−W±−l∓i for a singlino-like neutralino

has little dependence on Λi. For example, in the 2 ν̂c-model one finds that the element ξi5,

corresponding to the right-handed neutrino νc
1, is given by

ξi5 =
MR2λ1mγ

4
√

2Det(MH)
(v2

u − v2
d)Λi −

(√
2λ2c+

4Det0vR1

µmγ(v2
u − v2

d)
b

)
αi . (B.10)

The coupling has two pieces, one proportional to Λi and one proportional to αi. However,

the αi piece gives the dominant contribution, as can be shown using an estimate completely

analogous to the one done for a bino-like χ̃0
1. In this case, the ratio between the two terms

in Equation (B.10) is αi-piece ∼ 8Λi-piece, sufficient to ensure a very good proportionality

to the αi parameters. This estimate has been corroborated numerically.
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[51] D.E. Lopez-Fogliani and C. Muñoz, Proposal for a new minimal supersymmetric standard

model, Phys. Rev. Lett. 97 (2006) 041801 [hep-ph/0508297] [SPIRES].
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